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Design for landscape under the

concept of folk art communication and

green low carbon

Qing Wang1

Abstract. To improve the reasonability and high efficiency of garden landscape design, a low-
carbon garden landscape design method based on Q reinforced differential neural network algorithm
is put forward. First, an analysis is conducted in problems arising from the low-carbon garden
landscape design, and an indicator system for low-carbon garden landscape design constituted by
7 elements including functional orientation and spatial arrangement etc is identified; then, the
BP neural network algorithm is introduced to carry out the index prediction, and to improve
performance of such neural network algorithm, the Q reinforced differential evolution algorithm
instead of the original BP algorithm is adopted as a parameter optimization method for the neural
network algorithm, thus achieving the performance improvement; finally, a simulation experiment
is carried out, showing that the proposed method can effectively improve the index accuracy of
garden landscape design and improve the design reasonability, and verifying effectiveness of such
method.

Key words. Q reinforcement, Differential evolution, Neural network, BP algorithm, Garden
landscape, Low carbon.

1. Introduction

Low carbon is, at present, the most popular design idea in art design. For urban
garden landscape design, plant cultivation itself serves as an expression of the low
carbon idea. Nowadays, the garden design in China is still facing the following
problems:

1. Awareness of adaptation to local conditions is lacking in the process of garden
design. Some gardens, before specific planning and design, have been endowed with
natural and favorable terrain. However, most garden designers tend to neglect these
original geographical/geomorphic features and cannot make a full and reasonable
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use of local natural resources; on the contrary, they often complete their “imagi-
native” design by digging the mountain or transplanting, which not only increases
the design cost but also aggravates the situation of increasing carbon emissions. 2.
The building material selection is not reasonable. For garden design at present,
there is trend of selecting chemical materials as the building material. However,
such material, with short service cycle and poor renewability, is showing more and
more disadvantages such as producing large amount of harmful gases. 3. Purposely
seeking and following foreign design style, to a great extent, goes against the idea of
“design originating from local”. Garden design in each country has gone through a
process of historical evolution, so the design style of different country and region has
its own characteristics. Hence, blindly seeking for international popular elements
and gathering different foreign styles into a garden with limited area will merely
lead to an uncoordinated environment, as well as more resource waste and carbon
emissions. 4. No significance is attached to plant selection and collocation. Relevant
investigation reveals that plants of different types have different carbon sequestra-
tion capacity, so reasonable plant selection and collocation will promote the function
of carbon absorption. Hence, the incorrect idea of “paving a great lawn in a garden”
should be abandoned, and ground cover plants with higher ecological benefits should
be selected for greening, which, being a low-carbon and economical design method,
can effectively lower the cost incurred in post-stage nursing and management.

BP neural network model, which performs fairly well in its predictive function,
enjoys an application potential in garden landscape planning evaluation. In this
research, qualitative evaluation is combined with quantitative evaluation, and a BP
neural network model with predictive function, which can effectively lower the er-
ror in evaluation for landscape planning scheme, is established to provide basis for
scheme optimization.

2. Problem model description

2.1. Evaluation indicators for garden landscape planning

According to document literature, 14 key elements for garden landscape plan-
ning are screened out, and then 7 elements including function orientation, spatial
arrangement, agricultural characteristics, traffic organization, scenic spots, service
facilities and vegetation landscape are finalized as the evaluation indicators through
investigation in the public and experts regarding their degree of attention. Evalu-
ation indicators for garden landscape planning and their assignment standards are
given in Table 1, and the evaluation criterions are: very bad: 0∼2 scores; relatively
bad: 2∼4 scores; just so-so: 4∼6 scores; good: 6∼8 scores; very good: 8∼10 scores.
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Table 1. Evaluation indicators for garden landscape planning and their assignment standards

S/N Evaluation indicators Value-determined standards

1 Function orientation Accurate function orientation, which meets the
market requirements

2 Spatial arrangement Reasonable spatial arrangement, with clear and
diversified space forms

3 Agricultural characteristics Distinct agricultural characteristics; landscape
with full-bodied agricultural style

4 Traffic organization Clear, unblocked and well-arranged traffic organi-
zation

5 Scenic spots Reasonable landscape division, rich in attractions

6 Service facilities Complete service facilities, which meet the re-
quirement for garden development

7 Vegetation landscape Rich vegetation landscape, with diversified
species and communities

8 Impression evaluation Subjective evaluation of experts according to ex-
perience

2.2. BP neural network model

BP network is a mathematic equation used to learn and store lots of input-
output mode mapping relationship without prior description of such relationship.
Topological structure of BP neural network model includes the input layer, hidden
layer and output layer, as is shown in Fig. 1. Learning process of BP algorithm can
be divided into forward propagation and back propagation. In the process of forward
propagation, the information is propagated from the input layer to hidden layer, and
then to the output layer. If the output layer fails to receive the expected output
results, back propagation will be carried out, during which the error signal returns
along the original propagation routine. The model weight adjustment adopts the
learning algorithm of back propagation, and the network model adopts three-layer
BP network, in which the input layer includes 7 nodes, namely function orientation,
spatial arrangement, agricultural characteristics, traffic organization, scenic spots,
service facilities and vegetation landscape. After calculation and adjustment, there
are neurons in the hidden layer and one node in the output layer. For the purpose
of impression evaluation, Sigmoid is adopted as the conversion function and the
maximum training parameter is set as 9000, with training objectives of error less
than 0.001, as well as a learning efficiency of 0.16 and a momentum factor of 0.7;
other parameters all adopt the default value. The analysis is carried out under the
help of DPS software.

However, BP neural network algorithm also has its problem in performance,
namely local extremum optimization. In this paper, an optimization algorithm is
proposed to replace the BP learning algorithm, and an improvement in such opti-
mization algorithm is carried out to improve prediction performance of the neural
network algorithm. Here, differential evolution algorithm is selected as the optimiza-
tion algorithm.
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Fig. 1. Structure of neural network model

3. Q learning theory and DE algorithm

3.1. Q learning theory

Q learning is a kind of reinforced learning method, in which the environmental
state change through a certain operation endows the operation with corresponding
rewards (or punishment), thus pushing forward the operation towards a clear target
direction. In practical application, it is difficult, under the state of s, to predict the
rewards at s′ in the future. In Q learning, merely the optimal action rewards are
taken into consideration.

Select S = {s1, · · · , sn} as a state set of the agent under the given environment;
A = {a1, · · · , an} as the set of actions optional for the agent under the state of
si ∈ S; r (si, aj) as immediate rewards for action aj of the agent under the state of
si; δ (si, aj) as a transition function for action aj of the agent under the state of si;
γ as a discount factor for punishment on future reward delay, γ ∈ [0, 1]; Q (si, aj)
as the overall rewards for action aj of the agent under the stage of si. In this way,
Q (s, a) can be expressed as [11]:

Q (s, a) = r (s, a) + γ
∗
V Q (δ (s, a))

= r (s, a) + γmax
a′

Q (δ (s, a) , a′) .
(1)

In the formula,
∗
V represents overall rewards obtained by the agent under the

state of s.
A differential improvement method for Q learning algorithm is given below:

Q (s, a) ← (1− α)Q (s, a) +

α×
(
r (s, a) + γmax

a′
Q (δ (s, a) , a′)

)
.

(2)

In the formula above, the main purpose is to achieve a progressive increase in Q-
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value of Q (s, a) when action a is towards δ (s, a), thus ensuring a next action reward
r (s, a) greater than Q (s, a) and an evolution towards an optimal direction. When
α = 0, it represents a suspension of the learning process, and α = 1 represents that
the agent merely considers the latest information. The discount factor γ determines
the significance of future information; γ = 0 represents that the algorithm merely
values the current rewards, while γ = 1 indicates that the algorithm focuses on
higher long-term rewards.

3.2. Differential evolution algorithm

The DE algorithm, characterized by simple structure, quick convergence and
high accuracy, enjoys extensive application. Assume that there are NP population
vectors in the DE algorithm, the Gth population can be expressed as [8]:

PG = {X1 (G) ,X2 (G) , · · · ,XNP (G)} (3)

In the formula, Xi (G) , i ∈ 1, · · · , NP represents the population individual. The
DE algorithm can be implemented through the following steps [9]:

Step 1 (initialization): For the G = 0th population, its individual Xi (0) can
be achieved through a uniform random action within the value range of [Xmin, Xmax],
in which: {

Xmin = {xmin−1, · · · , xmin−D} ,
Xmax = {xmax−1, · · · , xmax−D} .

(4)

In the formula, D serves as the DE population dimension. Hence, the jth element
of the G = 0th population individual i can be initialized by using the following
formula:

xij (0) = xmin−j + randij (0, 1)× (xmax−j − xmin−j) . (5)

In the formula, randij (0, 1) , as a uniform distribution function in the interval
[0, 1], can randomly initialize the crossover frequency probability in such interval.

Step 2 (variation): for standard DE variation, 2 population individuals
(Xrand−1 (G), Xrand−2 (G)) are randomly selected to produce new individual Vi (G)
through vector superposition with the target individual Xi (G), namely that:

Vi (G) =Xi (G) + F1 (Xbest (G)−Xi (G))

+ F2 (Xrand−1 (G)−Xrand−2 (G))
(6)

In the formula, F is the scale factor (F ∈ [0, 2]). A relatively simple variation mode
is selected.

Step 3 (crossover): there are, in general, two crossover mode, namely binomial
crossover and exponential crossover:

Binomial crossover: crossover between the donor vector Vi (G) and target vector
Xi (G) is carried out to produce the new individual Ui (G). Its operation form is
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shown below:

uij (G) =

{
vij (G) , if randij ≤ Cr or j = jrand
xij (G) , otherwise

(7)

Exponential crossover: an integer n is randomly selected as the starting point of
target vector Xi (G) in the interval [1, D] to indicate the start of element exchange
with the donor vector Vi (G). In the interval [1, D], at the same time, another
integer L is selected as number of elements contributed by the donor vector to the
new individual vector. In this way, the exponential crossover can be expressed as:

uij (G) =

{
vij (G) , forj = 〈n〉D , · · · , 〈n+ L− 1〉D
xij (G) , otherwise

(8)

In the formula, 〈·〉D represents modular function of the modulus D.
Step 4 (selection): for minimization of the given target function f (x), optimal

selection mode in the DE algorithm can be expressed as:

Xi (G+ 1) =

{
Ui (G) , if f (Ui (G)) ≤ f (Xi (G))

Xi (G) , if f (Ui (G)) > f (Xi (G))
(9)

4. Neural network parameter learning based on QDEMA
algorithm

In the QDEMA algorithm, global optimization is achieved by Differential Evo-
lution (DE algorithm), and local deep search by Differential Q Learning (DQL).
Pseudo codes for the QDEMA algorithm are given in Table 1, and the algorithm
steps are shown as follows:

Step 1 (initialization): initialize NP and population of the dimension D in the
initial search range. The Q-table is initialized at relatively small numerical value. If
the Q-value can reach its maximum value, namely 100, the corresponding Q-table
value determined will be 1;

Step 2 (parameter self-adaptation): rewards and punishment measures for
Q-table are mainly used to select appropriate scale factor F . The probability of
F = Fj can be calculated from the following formula:

P (Fj) = Q (si, 10Fj)

/
10∑
l=1

Q (si, 10Fl) . (10)

To maintain Q-value adaptability of each row, a random numerical value r is
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selected in the interval [0, 1] and Fj is selected to meet the following conditions:

7

j−1∑
m=1

P (F = Fm) < r ≤
j∑

m=1

P (F = Fm)

⇒
∑j−1

m=1Q (si, 10Fm)∑10
l=1Q (si, 10Fl)

< 1 ≤
∑j

m=1Q (si, 10Fm)∑10
l=1Q (si, 10Fl)

.

(11)

Step 3 (DE operation): carry out the individual ranking and state assignment
by using the DE algorithm, determine fi as the newest target value of individual i,
and then carry out normalization in fi (fi

/∑NP
j=1 fi); then implement the descending

ranking, thus obtaining a ranking table graded as r, with a state of sr; and finally
repeat these steps in r = 1 : NP .

Step 4 (Q-table updating): if the individual si with a state of si, after ex-
ecuting the operation Fj , turns into a state of sk, its target adaptive value will
be increased. Hence, the positive reward formula for updating Q (si, 10Fj) can be
expressed as:

Q (si, 10Fj) = (1− α)Q (si, 10Fj)

+ α
(
reward (si, 10Fj) + γmax

F ′
(sk, 10F

′)
)
.

(12)

Or Q (si, 10Fj) will adopt negative reward −K for updating.
Step 5 (judgment in convergence): repeat the step 2-4 until the following condi-

tions are satisfied: reach the limit for termination of iteration or meet the conver-
gence accuracy.

5. Experimental analysis

In this research, 20 garden landscape planning schemes from a domestic city are
taken as the examples, and 5 experts in landscape planning & design are invited to
carry out the scoring simulation, in which scoring is in accordance with the evaluation
standards listed in Chapter 2, and the average score is set as the final assignment.
The results are shown in Table 2.

Table 3 shows the assignment results for garden landscape planning scheme in a
domestic city which adopts the BP neural network algorithm and method proposed
in this paper. It indicates that the model adopting the BP neural network algorithm
and method proposed in this paper can more accurately fit the original data, and
predicted value of the sample is very approximate to the actual value. However,
method proposed in this paper can achieve higher evaluation accuracy than the BP
neural network algorithm. Hence, with high prediction accuracy and excellent gen-
eralization ability, such proposed method, after appropriate setting, can be applied
to scheme evaluation for garden landscape planning.
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Table 2. Assignment for garden landscape planning scheme in a domestic city

Scheme
No.

Function
orientation

Spatial
arrangement

Agricultural
characteristics

Traffic
organization

Scenic
spots

Service
facilities

Vegetation
landscape

Impression
evaluation

1 5.6 7.8 9.2 7.8 8.7 7.8 7.8 8.7
2 9.1 9.5 7.8 8.6 7.4 8.6 8.9 6.4
3 8.3 9.2 8.6 8.3 9.2 8.6 9.6 9.2
4 7.6 6.4 5.8 7.6 6.4 5.8 6.2 7.9
5 8.9 9.2 8.9 9.2 8.7 9.4 5.2 9.1
6 9.6 7.9 9.6 6.4 6.3 8.2 6.3 8.3
7 9.0 9.3 6.2 5.9 8.2 7.9 8.2 9.3
8 6.3 8.0 7.4 8.7 4.9 6.4 7.2 8.0
9 7.8 8.7 4.8 8.9 9.2 4.9 2.6 8.9
10 8.6 7.4 8.6 9.6 8.3 9.2 8.6 9.6
11 9.4 5.2 9.1 6.2 4.9 8.9 8.9 9.2
12 8.2 6.3 8.3 9.0 9.3 6.2 9.6 7.9
13 7.9 8.2 5.4 6.3 8.0 7.4 8.0 8.9
14 9.2 4.9 2.6 8.3 9.2 8.6 8.7 9.6
15 6.4 7.2 8.4 7.6 6.4 9.1 9.2 4.9
16 5.9 4.9 1.9 7.9 8.2 5.4 6.4 7.2
17 9.0 5.1 8.3 9.6 7.9 9.6 5.9 4.9
18 8.7 6.2 6.5 9.0 5.1 8.3 5.1 8.3
19 7.4 6.7 9.3 9.0 9.3 6.5 6.2 6.5
20 8.5 7.6 4.8 7.2 8.4 9.0 5.1 8.3

Table 3. Evaluation results of garden landscape planning scheme in a domestic city

Scheme
No.

Original
value

Predicted value by
method proposed
in this paper

Predicted
value by BP

Scheme
No.

Original
value

Predicted
value

Error
(%)

1 7.6 7.5 7.2 11 9.0 9.2 9.4
2 9.2 9.0 9.3 12 8.1 8.0 8.5
3 8.4 8.3 8.7 13 6.7 6.8 6.2
4 8.8 8.6 8.4 14 8.8 8.7 8.4
5 9.0 9.1 9.3 15 6.9 6.7 6.7
6 9.5 9.3 9.2 16 7.5 7.6 7.3
7 8.4 8.5 8.7 17 9.4 9.2 9.0
8 7.4 7.6 7.6 18 8.6 8.7 8.2
9 7.0 7.2 7.5 19 7.8 7.7 7.6
10 8.7 8.8 8.6 20 8.2 8.4 8.5

There is a complicated non-linear relationship among function orientation, spatial
arrangement, agricultural characteristics, traffic organization, scenic spots, service
facilities, vegetation landscape and comprehensive quality of urban gardens. In such
model, total score of a scheme can be obtained by inputting the expert’s evaluation
scores in each indicator, which overcomes the randomness, subjective uncertainty
and cognitive fuzziness of manual evaluation, and, at the same time, ensures objec-
tivity and accuracy of the evaluation results. Since there is a big difference in the
experts’ knowledge background and experience, which may affect accuracy of the



DESIGN FOR LANDSCAPE UNDER THE CONCEPT OF FOLK ART 57

prediction results, the number of experts should be increased to lower the potential
error, thus ensuring accuracy of the original data. At the same time, massive and
reliable samples are also a fundamental guarantee for prediction accuracy. In this re-
search, the demonstration part is mainly aiming at the scheme for garden landscape
planning in a certain city; in the future research, the sample size should be enlarged
to improve the evaluation accuracy. With regard to the method proposed in this
paper and the BP neural network algorithm, scientificity of the indicator system and
accuracy of the evaluation standards, as well as neglecting important factors, will
have a significant impact on the evaluation results. Hence, further research shall be
necessary for such problems.

6. Conclusion

In this paper, a low-carbon garden landscape design method based on Q rein-
forced differential neural network algorithm is put forward, and an indicator system
for low-carbon garden landscape design constituted by 7 elements including func-
tional orientation and spatial arrangement etc is established; and then such proposed
method is used to achieve optimization design of the indicator system. The exper-
imental results show that the proposed method can achieve higher design accuracy
and design reasonability. Emphasis for next research: (1) further improvement in
the indicator system for low-carbon garden landscape design; (2) further improve-
ment in performance of the prediction algorithm; (3) joint development with the
design system.
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